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Abstract

In our attempts to understand cellular function at the molecular level, we must be able to synthesize
information from disparate types of genomic data. We consider the problem of inferring gene functional
classifications from a heterogeneous data set consisting of DNA microarray expression measurements
and phylogenetic profiles from whole-genome sequence comparisons. We demonstrate the application
of the support vector machine (SVM) learning algorithm to this functional inference task. Our results
suggest the importance of exploiting prior information about the heterogeneity of the data. In partic-
ular, we propose an SVM kernel function that is explicitly heterogeneous. We also show how to use
knowledge about heterogeneity to aid in feature selection.

1 Introduction

A primary goal in biology is to understand the molecular machinery of the cell. The sequencing projects cur-
rently underway provide one view of this machinery. A complementary view is provided by data from DNA
microarray hybridization experiments. In this paper, we describe computational techniques for inferring
gene function from these two distinct types of data. These techniques are a first step toward the longer-term
goal of learning about gene function simultaneously from many different types of genomic data.

Clearly, the availability of complete genomic sequence of human and other species provides a tremen-
dous opportunity for understanding the functions of biological macromolecules. In this work, we infer gene
function from phylogenetic profiles that are derived from a comparison between a given gene and a collec-
tion of complete genomes. Each profile characterizes the evolutionary history of a given gene. Two genes
with similar phylogenetic profiles are likely to have similar functions, under the assumption that their similar
pattern of inheritance across species is the result of a functional link.

Gene function can also be inferred from DNA microarray expression data. By offering a snapshot of the
messenger RNA expression levels of thousands of genes at once, microarrays allow biologists to formulate
models of gene expression on a scale that was unimaginable several years ago. Initial analyses of this type
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of data focused on clustering algorithms, such as hierarchical clustering [10] and self-organizing maps [22].
These unsupervised algorithms attempt automatically to locate clusters of genes that share similar expression
patterns and hence may share similarity in function. Recently, Brownet al.applied a collection of supervised
learning techniques to a set of microarray expression data from yeast [3]. They showed that an algorithm
known as a support vector machine (SVM) [23, 4, 7] provides excellent classification performance.

In this paper, we extend the methodology of Brownet al. to learn gene functional classifications from a
heterogeneous data set consistingof microarray expression data and phylogenetic profiles. We show that this
combination is most successful when the SVM operates in a feature space that is explicitly heterogeneous.
SVMs are members of a larger class of algorithms, known as kernel methods, which can be non-linearly
mapped to a higher-order feature space by replacing the dot product operation in the input space with a kernel
functionK(�; �). Mercer’s theorem [7] shows that every positive semi-definite kernel function corresponds to
the dot product operation in some higher-dimensional feature space. In this work, we construct an explicitly
heterogeneous kernel function by computing separate kernels for each data type and summing the results.
The resulting kernel incorporates prior knowledge about the heterogeneity of the data byaccounting for
higher-order correlations among features of one data type but ignoring higher-order correlations across data
types. This heterogeneous kernel leads to improved performance with respect to an SVM trained directly on
the concatenated data.

We also show that prior knowledge of heterogeneity should be exploited when selecting subsets of input
features for use in classification. For most of the gene functional classifications that we investigated, one
type of genomic data provides significantly better training data than the other type. Many feature selection
algorithms are available for automatically selecting the most useful features to use in training a classifier.
We demonstrate that, for these data, feature selection algorithms that select among data types (i.e., learn
from phylogenetic profiles, from gene expression data, or from both) perform better than algorithms that
directly select features from the combined data set.

The idea of combining heterogeneous data sets to infer gene function is not new. Marcotteet al. describe
an algorithm for functional annotation that uses expression vectors and phylogenetic profiles, as well as
evolutionary evidence of domain fusion [14]. However, the algorithm consists of predicting functional
links between pairs of genes using each type of data separately, and then cataloging the complete list of
links. In contrast, the SVM method described here considers the various types of data at once, making a
single prediction for each gene with respect to each functional category. Indeed, the performance of SVMs
when data types are combined and a single hypothesis is formed is superior to combining two independent
hypotheses, and we believe this will be true for a wide range of techniques.

2 Methods

The experiments carried out here use two types of genomic data. The first data set derives from a collection
of DNA microarray hybridization experiments [10]. Each data point represents the logarithm of the ratio
of expression levels of a particular gene under two different experimental conditions. The data consists
of a set of 79-element gene expression vectors for 2465 yeast genes. These genes were selected by Eisen
et al. based on the availability ofaccurate functional annotations. The data were generated from spotted
arrays using samples collected at various time points during the diauxic shift [8], the mitotic cell division
cycle [21], sporulation [6], and temperature and reducing shocks, and are available on the Stanford web site
(http://www-genome.stanford.edu).

In addition to the microarray expression data,each of the 2465 yeast genes is characterized by a phylo-
genetic profile [17]. In its simplest form, a phylogenetic profile is a bit string, in which the Boolean value of
each bit indicates whether the gene of interest has a close homolog in the corresponding genome. The pro-
files employed in this paper contain, at each position, the negative logarithm of the lowestE-value reported
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by BLAST version 2.0 [1] in a search against a complete genome, with negative values (corresponding to
E-values greater than 1) truncated to 0. Two genes in an organism can have similar phylogenetic profiles
for one of two reasons. First, genes with a high level of sequence similarity will have, by definition, similar
phylogenetic profiles. Second, for two genes which lack sequence similarity, the similarity in phylogenetic
profiles reflects a similar pattern of occurence of their homologs across species. This coupled inheritance
may indicate a functional link between the genes, on the hypothesis that the genes are always present to-
gether or always both absent because they cannot function independently of one another. The profiles in
this study are constructed using 24 complete genomes, collected from The Institute for Genomic Research
website (http://www.tigr.org/tdb) or from the Sanger Centre website (http://www.sanger.au.uk/). Prior to
learning, the gene expression and phylogenetic profile vectors are adjusted to have a mean of 0 and a vari-
ance of 1.

Classification experiments are carried out using gene functional categories from the Munich Information
Center for Protein Sequences Yeast Genome Database (MYGD) (http://www.mips.biochem.mpg.de/proj/
yeast). The database contains several hundred functional classes, whose definitions come from biochemical
and genetic studies of gene function. The experiments reported here use classes containing ten or more
genes, and which are not substantially encompassed by any other class used, amounting to 108 classes. The
complete data set and corresponding classifications are available at http://www.cs.columbia.edu/compbio.

For each class, a support vector machine is trained to discriminate between class members and non-
members. A support vector machine is a supervised learning algorithm developed over the past decade by
Vapnik and others [23]. In the form employed here, SVMs learn binary classifications; i.e., the SVM learns
to answer the question, “Does the given gene belong to functional class X?” where X is some category such
as “ribosomal genes” or “sugar and carbohydrate transporters.” Support vector machines classify points
by locating them with respect to a hyperplane that separates class members from non-class members in a
high-dimensional feature space. The characteristics of the feature space are determined by a kernel function,
which is selecteda priori. The current experiments employ a kernel function that has been shown to pro-
duce good classification performance for some MYGD classes using this gene expression data set [3]. The

function is a dot product raised to the third power:K(~X; ~Y) =
�
(~X �

~Y=
p
~X �

~X
p
~Y �

~Y) + 1
�3

. This
kernel function takes into account pairwise and tertiary correlations among gene expression measurements.
The normalization term in the denominator projects the data onto the unit sphere. As in previous work, the
SVM uses a soft margin that accounts for the disparity in the number of positive and negative examples for
each class. For details about this adjustment, see [3]. A useful introduction to SVMs is available [7], as is
the software used to perform these experiments (http://www.cs.columbia.edu/compbio).

The two types of data — gene expression and phylogenetic profiles — are combined in three different
fashions, which we refer to as early, intermediate and late integration. These three methods are summarized
in Figure 1. In early integration, the two types of vectors are concatenated to form a single set of length-
103 vectors, which serve as input for the SVM. In intermediate integration, the kernel values for each type
of data are pre-computed separately, and the resulting values are added together. These summed kernel
values are used in the training of the SVM. Thus, given the above kernel functionK(�; �), the heterogeneous
kernel isK(~Xg; ~Yg)+K(~Xp; ~Yp), where subscripts denote gene expression and phylogenetic profile data,
respectively. In late integration, one SVM is trained from each data type, and the resulting discriminant
values are added together to produce a final discriminant for each gene.

In intermediate integration, the heterogeneous kernel we propose is an attempt to incorporate prior
knowledge into the task at hand. The method creates local features that are polynomial relationships be-
tween inputs within a single type of data. These local features are then combined linearly to create global
features. From these global features a hyperplane is constructed. In constrast to the feature space produced
by the early integration method, polynomial relationships among different types of inputs are now ignored.
This restriction reflects our intuition that the correlations of inputs within one type of data are stronger than
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Figure 1: Three methods for learning from heterogeneous data with a support vector machine.In
early integration, the two types of data are concatenated to form a single set of input vectors. In intermediate
integration, the kernel values are computed separately for each data set and then summed. In late integration,
one SVM is trained on each data type, and the resulting discriminant values are summed.

correlations between data types. In theoretical terms, removal of these correlations reduces overfitting as
(unneeded) capacity is reduced. Indeed, this approach is similar in spirit to one already used in digit recog-
nition problems in order to incorporate prior knowledge about spatial location [23]. This incorporation was
achieved by constructing sparse polynomials that sum across sub-kernels computed for many small patches
within an image. In experiments on400-pixel input spaces, the authors decreased the number of polynomial
features from1023 to 1014 and reported a 68% reduction in test error [23].

Each classification experiment is performed using cross-validation. For a given class, the positively
labeled and negatively labeled genes are split randomly inton groups forn-fold cross-validation. An SVM
is trained onn � 1 of the groups and is tested on the remaining group. This procedure is repeatedn times,
each time using a different group of genes as a test set. For most of the experiments, we use three-fold
cross-validation. Leave-one-out cross-validation, which is used in some of the experiments, is simplyn-
fold cross-validation withn equal to the total number of training examples.

The performance of each SVM is measured by examining how well the classifier identifies the positive
and negative examples in the test sets. To judge overall performance, we define the cost of using the method
M asC(M) = (fp(M) + 2 � fn(M))=n, wherefp(M) is the number of false positives for methodM ,
fn(M) is the number of false negatives for methodM , andn is the number of members in the class. The
false negatives are weighted more heavily than the false positives because, for these data, the number of
positive examples is small compared to the number of negatives. To see why this unequal cost weighting
is important, consider two classifiers A and B trained to recognize the class of histones, which contains 15
genes. Say that, on a test set of 822 genes, classifier A correctly identifies all 15 histones but also includes
15 non-histones in its list of positive genes. On the other hand, suppose that classifier B classifies everything
in the test set as negative. Clearly, classifier A has learned to recognize something about the histones,
whereas classifier B has learned nothing at all. However, using an equal weighting of false positive and false
negatives, these two classifiers would yield the same cost (15). We assign a higher cost to false negatives
in order to implement the intuition that failing to recognize one of the few positive examples is worse
than inaccurately including one of the many negative examples in the test set. The cost for each method
is compared to the costC(N) for using the null learning procedure, which classifies all test examples as
negative. We define the normalized cost savings of using the learning procedureM asS(M) = (C(N)�
C(M))=2n, wheren is the total number of positive examples in the class. Thus, a perfect classifier has a
normalized cost savings of 1, and the null classifier has a normalized cost savings of 0.
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We also performed feature selection on the combined data using the Fisher criterion score [2, 11]. For
a given featurej, we compute the mean and standard deviation of that feature across the positive examples
(�+j and �+j , respectively) and across the negative examples (��j and ��j ). The Fisher criterion score,
(�+j � ��j )

2=((�+j )
2 + (��j )

2), gives higher values to features whose means differ greatly between the two
classes, relative to their variances.

Finally, we also used thek-nearest neighbors algorithm (see, e.g [9]) as a means of selecting a type
of data from which to learn. The algorithm labels a test point as positive if more thank=2 of its closest
(in Euclidean distance) neighbors from the training set are labeled positive; otherwise, the point is labeled
negative. Takingk = 1 (i.e., 1-nearest neighbor) amounts to assigning to each point the label associated
with its closest neighbor. Given a set of features, one can measure the quality of the set via the leave-one-out
error of this algorithm.

3 Results

Our initial experiments aimed at determining which classes among the 108 selected were learnable from
either data type used alone. Based on the cost-savings measure, for each data type we selected the top
15 classes for further study. Three classes appear on both lists, yielding a total of 27 classes. The results
are summarized in the first two columns of Table 1. Included in the table are the equivalents of all five
classes used by Brownet al. [3].1 These experiments show that the SVM methodology generalizes well to
phylogenetic profile data, and that this new type of data allows for the characterization of new functional
classes.

The second set of experiments tests the ability of the SVMs to learn from both types of data at once. The
final three columns in Table 1 summarize these results, and Table 2 provides more details about the top five
MYGD classes. Overall, integrating the data using a heterogeneous kernel function provides a normalized
cost savings that is the best-performing or comparable to the best-performing method in 21 of the 27 classes,
where “comparable” means that the two values differ by no more than the sum of their standard deviations.
This is considerably more classes than any of the other four methods. Furthermore, the average cost savings
across all classes is higher for this method than any other (p < 0:05, paired Student’st-test). Similarly, the
intermediate integration scheme fails to learn to classify only two classes, which is fewer classes than any
of the other methods.

Learning from both data types is not always a good idea. For four classes, all three of the combined
methods lead to decreased classification performance relative to an SVM trained on a single type of data.
In every case, the decrease occurs when one data type provides much more information than the other,
indicating that the inferior data type contributes noise that disrupts learning. This observation suggests that
a feature selection algorithm that effectively eliminates noisy features should allow an SVM to learn these
classes more accurately.

However, our experiments demonstrate that a naive feature selection algorithm, which does not take
into account the heterogeneity of the data, does not typically yield improved classification performance.
Figure 2 shows the results of using the Fisher criterion score to select features from the combined data.
By treating each feature independently, this simple feature selection algorithm does not take into account
possible correlations between features, but the algorithm has the advantages of simplicity and efficiency.
For the most part, classification performance declines as features are removed. For several MYGD classes,
when combining the two types of data leads to a substantial decline in performance, feature selection yields

1The MYGD functional catalog has been revised since the publication of Brownet al., changing the composition of the classes
substantially. For example, the “proteasome” class used in that paper has been subsumed into the “proteolysis” class. This is why
the SVM performance on these classes differs from the performance reported in the earlier work.
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Class Exp Phylo Early Intermediate Late
amino acid transporters 0:05� 0:04 0:77� 0:10 0:50� 0:04 0:71� 0:08 0:49� 0:07

ribosomal proteins 0:71� 0:02 0:09� 0:03 0:76� 0:01 0:71� 0:01 0:69� 0:01

sugar and carbohydrate transporters 0:33� 0:07 0:67� 0:02 0:68� 0:06 0:70� 0:01 0:63� 0:03

glycolysis and gluconeogenesis 0:21� 0:03 0:43� 0:05 0:28 � 0:02 0:39� 0:05 0:39� 0:04

mitochondrial organization 0:40� 0:03 0:15� 0:01 0:43� 0:03 0:42� 0:02 0:35� 0:02

tricarboxylic acid pathway 0:21� 0:11 0:15� 0:07 0:32� 0:08 0:42� 0:07 0:25� 0:13

deoxyribonucleotide metabolism 0:07� 0:05 0:31� 0:11 0:24� 0:15 0:39� 0:11 0:31� 0:12

organization of cytoplasm 0:35� 0:01 0:18� 0:01 0:38� 0:01 0:34� 0:02 0:35� 0:02

transport ATPases 0:13� 0:04 0:37� 0:05 0:23� 0:05 0:32� 0:04 0:22� 0:03

amino acid biosynthesis 0:18� 0:02 0:28� 0:02 0:29� 0:03 0:36� 0:04 0:27 � 0:02

purine ribonucleotide metabolism 0:17� 0:03 0:26� 0:05 0:20� 0:04 0:33� 0:04 0:19 � 0:03

pyrimidine ribonucleotide metabolism 0:03� 0:02 0:33� 0:06 0:11� 0:04 0:28� 0:03 0:17 � 0:03

cytoplasmic degradation 0:32� 0:01 0:32� 0:06 0:30� 0:03 0:17 � 0:02

respiration 0:32� 0:02 0:30� 0:04 0:23� 0:04 0:17 � 0:03

organization of chromosome structure 0:31� 0:01 0:30� 0:01 0:29� 0:02 0:13� 0:03

phosphate utilization 0:22� 0:04 0:08� 0:05 0:26� 0:05 0:21� 0:04 0:22� 0:04

organization of plasma membrane 0:07� 0:02 0:25� 0:01 0:24� 0:03 0:26� 0:03 0:26� 0:02

pentose phosphate pathway 0:20� 0:15 0:26� 0:07 0:15� 0:10

cellular import 0:04� 0:02 0:25� 0:04 0:18� 0:05 0:17� 0:03 0:21� 0:04

protein folding and stabilization 0:24� 0:04 0:20� 0:04 0:23� 0:05 0:14� 0:04

proteolysis 0:23� 0:02 0:24� 0:02 0:18� 0:06 0:17� 0:01

pheromone response generation 0:24� 0:05 0:15� 0:03 0:14� 0:08

nuclear organization 0:21� 0:01 0:07� 0:01 0:24 � 0:03 0:24� 0:02 0:17 � 0:02

drug transporters 0:23� 0:09

organization of endoplasmatic reticulum0:20� 0:02 0:22� 0:03 0:19� 0:05 0:13� 0:03

organization of cell wall 0:12� 0:04 0:19 � 0:06 0:14� 0:08 0:16� 0:07 0:21� 0:08

anion transporters 0:21� 0:02

Mean cost savings 0:19� 0:02 0:21� 0:04 0:27� 0:03 0:31� 0:03 0:24� 0:03

Number of best-performing 10 12 17 21 8
Number of non-learnable 4 6 3 2 3

Table 1:Summary of learning performance results. Each row in the table contains the cost savings for
one MYGD classification. Each cost savings is computed via three-fold cross-validation, with standard
deviation calculated across five repetitions. The first two columns are from SVMs trained on a single type
of data (gene expression or phylogenetic profiles). The remaining three columns are from SVMs trained
using early, intermediate and late integration of the data, as described in the text. Values in bold face are the
best-performing or are comparable to the best-performing of the five methods. A missing value indicates
that the cost savings is not significantly greater than zero. The last three rows are summary statistics, giving
the average values for each method and total number of bold-face and missing values in each column.

Class Size FP FN
amino acid transporters 22 2:0� 0:4 5:6� 0:2

ribosomal proteins 173 26:6� 1:2 34:2� 1:1

sugar and carbohydrate transporters 322:4� 0:7 9:0� 0:0

deoxyribonucleotide metabolism 9 0:2� 0:2 4:6� 0:7

mitochondrial organization 296 84:8� 1:8 128:4� 1:7

Table 2: Error rates for selected MYGD classes.The table lists error rates for the five most learnable
MYGD classes. Each row contains the name and size of the class, and the average numbers of false positives
and false negatives for that class from an SVM using intermediate integration.
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Figure 2:Effect of feature selection on learning performance.Each series shows the performance of an
SVM trained on the combined data set using varying numbers of features, selected according to the Fisher
criterion score. These examples are representative of results obtained for all 27 classes tested.

Express Phylo Early Fisher sel 1-NN sel 5-CV sel
wins in all 3 trials 8 15 17 19 20 20
wins in 2 or more trials 8 15 17 22 25 26

Table 3: Feature selection for optimal data set choice.The table lists the number of classes for which
various data set selection algorithms choose the best or within one standard deviation of the best performing
data set. The results are computed over three separate trials, so the values are given for the case when
the best choice is made in all three trials or in more than two trials. The algorithms (columns from left to
right) are: always choosing the expression, phylogenetic or combined data, and selecting the dataset via the
Fisher criterion score, leave-one-out error of the 1-nearest neighbor algorithm and five-fold cross-validation
of SVMs.

a small improvement. However, in none of these cases does feature selection yield a level of performance
comparable to that obtained using a single data type.

A more sophisticated feature selection method, which does take into account correlations and nonlin-
earities, yields similar results. The method uses the SVM solution to measure the quality of the features,
and removes features that appear to contribute least — a so-called filter method (see, e.g [24]). We do not
give details of the method here because, although the results are marginally superior to the Fisher criterion
results, the same problem arises: the SVM feature selection method does not achieve performance equal to
the best-performing single data type in cases where the combined data set performs poorly. Even worse, for
these cases, hand-picking the best-performing single data set and trying various ways of adding features to it
still leads to a consistent deterioration in performance. Apparently, when one data set performs quite poorly
compared to the other (e.g., amino acid transporters, glycolysis and glucogenesis, sugar and carbohydrate
transporters, etc.), no useful information can be gleaned from it.

The problem that the combined data sometimes performs poorly (or in general one dataset/kernel com-
bination performs better than others) suggests that it would be useful to determine that such an outcome
was likely before attempting to train. In other words, one would like to be able to make the optimal choice
between the options of using one data type, or the combination, before training.

Because this task is a special case of feature selection (selecting the best set of features givenn distinct
sets), traditional quality measures for feature selection can still be used. For example, the Fisher criterion
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score can be used to select the best data set by choosing the largest of the mean Fisher criterion scores.2

One can also attempt to estimate the SVM’s performance directly, via generalization bounds such as the
VC bounds [23] or the span bound [5], or via cross-validation. We found that only the cross-validation was
useful: the VC bound and span bound are too loose in this case. Finally, we also measure the leave-one-
out error of the nearest neighbor algorithm, which can be considered as a compromise between the Fisher
criterion score and cross-validation in terms of computation speed versus accuracy.

We performed a first test of this idea by selecting among three data sets: the gene expression data,
phylogenetic profiles or concatenated data set. For the 27 classes, we counted how many times in three trials
each method chose the best-performing data set. These results, shown in Table 3, indicate that choosing the
correct data set ahead of time can give improved results. Both cross-validation and nearest neighbors are
superior to the Fisher criterion score, since even when these methods do not choose the outright best data set
they choose one close to the best (as hinted by the “wins in 2 or more trials” results). However, while cross-
validation gains this improvement at the expense of high computational cost, nearest neighbors provides a
cheap compromise. Bearing in mind that nearest neighbors can work in a feature space via kernels [7], these
preliminary results suggest that one can estimate the performance of any kernel (including the intermediate
integration method) with fairly low computational cost.

4 Discussion

As the quantity and variety of genomic data increases, molecular biology shifts from a hypothesis-driven
model to a data-driven one. Whereas previously a single laboratory could collect data and test hypotheses
regarding a single system or pathway, this new paradigm requires combining genome-wide experimental
results, typically gathered and shared across multiple laboratories. For example, constructing a single,n-
element phylogenetic profile requires the availability ofn complete genomic sequences, which clearly could
not yet be generated by a single laboratory. The data-driven model requires sophisticated computational
techniques that handle very large, heterogeneous data sets.

The support vector machine learning algorithm is such a technique. SVMs scale well and have been
used successfully with large training sets in the domains of text categorization and image recognition [7].
Furthermore, in this paper, we demonstrate that SVMs can learn from heterogeneous data sets. With an
appropriate kernel function, the SVM learns from a combination of two different types of feature vectors. In
most cases, the resulting trained SVM provides as good or better gene functional classification performance
than an SVM trained on either data set alone.

For these data and these classifications, the heterogeneous kernel we introduce here (the intermediate
integration method) performs better than the other techniques we investigated. We hypothesize that the
improved performance results from the kernel’s ability to exploit our prior knowledge that correlations
within one type of data are stronger than correlations between different types. However, it may be useful
to consider feature selection algorithms that determine which type of data is most appropriate for a given
class, because no single method provides the consistently best performance across all classes. Data type
selection can be addressed by using a simple feature selection metric, such as the Fisher criterion score, or
more reliably (but with more computational expense) via cross-validation. Using the latter, from preliminary
experiments we expect one to obtain near best performance across all classes.

Our results show that the supervised learning methodology proposed by Brownet al. [3] can be ex-
tended in a straightforward fashion to some other classes in the MYGD. We have also shown, however, that
the majority of the MYGD classifications are not learnable from either gene expression data or phylogenetic
profiles. We do not believe that the failure to learn many of these classes is a failure of the SVM method.

2The mean Fisher score of the combined data set is always intermediate between the mean Fisher scores from the two subsets.
Hence, we choose the combined data set if its score falls within 10% of the highest alternative.
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Rather, for many functional classes, the data are simply not informative. The expression data is only infor-
mative if the genes in the class are coordinately regulated at the level of transcription under the conditions
tested. Similarly, phylogenetic profiles are limited in resolution in part because relatively few genomes are
available. In particular, among the genomes from which we derived the phylogenetic profiles, all but one are
bacterial. Thus it is difficult to generate useful phylogenetic profiles for genes that are specific to eucaryotes.
Because the availability of expression, sequence, and other kinds of data are increasing steadily, we expect
that the tools we are developing will continue to improve in power.

In our experiments, the primary utility of the phylogenetic profiles appears to lie in their ability to
summarize sequence similarity information rather than the inheritance patterns of genes during various spe-
ciation events. Analysis of the classes that are most easily learnable from phylogenetic profiles alone shows
that these are also the classes that share considerable sequence similarity among their members, for example,
the various transporter classes (data not shown). In a previously published report on the use of phylogenetic
profiles in yeast [14], this effect was eliminated by merging groups of similar genes, and by making links
between pairs of genes, rather than requiring that the phylogenetic profile similarity extend throughout an
entire functional class, as we have. In our experiments, removing or combining the data for genes with
sequence similarity would have had the undesirable effect of forcing the combining of the corresponding
expression data, and there is no reason to think that genes with sequence similarity would generally be co-
ordinately regulated at the expression level. However, there are obviously benefits to considering sequence
similarity in a gene classification task, and in the future we will consider other techniques for summarizing
sequence similarities in a fixed-length vector.

In the experiments reported here, we have used a fixed kernel function for all of the SVM learning
in order to allow direct comparisons across different feature combination and feature selection algorithms.
We selected this particular kernel because of its straightforward interpretation (accounting for all primary
features and up to tertiary correlations in the data) and because previous work showed that this kernel
performs well for this gene expression data set [3]. However, we did not experiment with the radial basis
kernel, which also gave good performance previously, and we did not optimize the kernel with respect to
the phylogenetic profile data. The performance of the various algorithms would no doubt be improved by
empirical kernel optimization. There is no reason to suppose, however, that a particular method would
benefit more than others from such optimization.

The experiments reported here suggest several avenues for future research. One obvious research di-
rection involves including additional types of data. Having shown that two types of data can be fruitfully
combined, we plan to extend the techniques described here to feature vectors derived from, for example,
the upstream promoter regions of genes [16]. We also plan to experiment with the Fisher kernel method,
in which each type of data is compared to a probabilistic model of the domain [13, 12]. By converting the
heterogeneous features to probability gradients, we hope to make the various types of data more directly
comparable.

Support vector machines are part of a larger class of algorithms known as kernel methods, which have
recently been gaining in popularity [18]. A kernel method is any algorithm that employs a kernel function to
implicitly operate in a higher-dimensional space. In addition to SVM classifiers, kernel methods have been
developed for regression [19], discriminant analysis [15], and principal components analysis [20]. More
members of this promising class of algorithms should be applied to problems in computational biology.
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